Numerical analysis of butterfly’s flight

  • How to describe wing-wing interaction through vortices?
  • How to control flight using vorticies?
  • Bifurcation analysis of flapping flight including symmetry-breaking of symmetric flapping model

Selected Publications:

Left: Coverpage of  NAGARE, a journal of Japan Society of Fluid Mechanics (vol. 21, 2002)

How do they swim in low Reynolds number flow?

  • Low Reynolds number swimmers from molecules to microorganisms
  • Swimming models and statistical properties

Selected Publications:

  1. T. Yamada and M. Iima, “Hydrodynamic turning mechanism of microoganism by solitary loop propagation on a single flagellum,” J. Phys. Soc. Jpn. 88 (2019) 114401.
  2. T. Ogawa, S. Izumi and M. Iima, “Statistics and stochastic models of an individual motion of photosensitive alga Euglena gracilis,“ J. Phys. Soc. Jpn. 86 (2017) 074401.
  3. M. Iima and A. S. Mikhailov,”Propulsion hydrodynamics of a butterfly micro-swimmer”, Europhys. Lett., 85 (2009) 44001.

Transport dynamics in amoeba, microorganisms and plants

Selected Publications:

  1. M. Iima, H. Kori and T. Nakagaki, “Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum,” Journal of Physics D: Applied Physics.50 (2017) 154004.
  2. A. Satake, M. Seki, M. Iima, T. Teramoto and Y. Nishiura, “Florigen distribution determined by a source-sink balance explains the diversity of inflorescence structures in Arabidopsis,” Journal of Theoretical Biology395 (2016) 227–237.
  3. T. Nakagaki, M. Iima, T. Ueda, Y. Nishiura, T. Saigusa, A. Tero, R. Kobayashi and K. Showalter, “Minimum-risk path finding by an adaptive amoebal network,” Physical Review Letters99 (2007) 068104.

Analytical theory of flapping flight using vortex

  • Force formula of flapping flight using vortex
  • Singularity of hovering flight in two-dimensional space

Selected Publications:

  • M. Iima, ”A paradox of hovering insect in two-dimensional space”,  J. Fluid Mech.617 (2008) 207–229.